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Abstract—In this paper we present two variant formulations
of the well-known Histogram of Oriented Gradients (HOG)
features and provide a comparison of these features on a large
scale sign detection problem. The aim of this research is to
find features capable of driving further improvements atop a
preexisting detection framework used commercially to detect
traffic signs on the scale of entire national road networks (1000’s
of kilometres of video). We assume the computationally efficient
framework of a cascade of boosted weak classifiers. Rather than
comparing features on the general problem of detection we
compare their merits in the final stages of a cascaded detection
problem where a feature’s ability to reduce error is valued more
highly than computational efficiency.

Results show the benefit of the two new features on a
New Zealand speed sign detection problem. We also note the
importance of using non-sign training and validation instances
taken from the same video data that contains the training and
validation positives. This is attributed to the potential for the
more powerful HOG features to overfit on specific local patterns
which may be present in alternative video data.

I. INTRODUCTION

Automatic traffic sign detection is an important problem

for driver assistance systems and automatic mapping applica-

tions. In this paper we aim to improve upon a preexisting sign

detection framework used commercially in large scale1 map-

ping applications. A key challenge in this work is producing

classifiers which are able to scan large video datasets quickly,

while achieving high detection rates2 (≈ 99%) and minimal

false positive rates (≈ 10−9) despite the huge volume of

input image data and the relative sparsity of traffic signs

within a typical road scene.

The authors of this paper have previously promoted [1],

[2] a viewpoint that both error rates and time to decision

determine the value of a given detection solution. This re-

search has contributed to the development of a highly robust

traffic sign detection platform used commercially on 1000’s

of kilometres of on road video. This includes the histogram

feature [1] and the LiteHOG+ feature [2] which are both

extremely computationally efficient, even when compared

to other efficient features such as Haar features [3]. While

the Histogram and LiteHOG+ features can achieve excellent

detection rates in combination with extremely low false

1Results shown in this paper consider a video dataset of 15 million
1024×768 image frames taken at 10 meter intervals from a vehicle mounted
camera system deployed in New Zealand.

2All false positive rates indicated in this paper are calculated per-
classifier-inspected-window. A typical single frame of video may be in-
spected more than a million times as the detector is run over multiple scales
and locations in the frame.

positive rates (< 10−9) for many sign detection problems,

the large volume of data we are processing in tandem with

the extreme sparsity of traffic signs within a road scene

mean that we still have need of more powerful features

able to further reduce false positive rates when our currently

available features are no longer able to.

If we accept that more powerful and complex features will

generally be more computationally intensive [2] we must also

accept that they may not be suitable for the entire evaluation

chain of a classifier. However, if we maintain our use of fast-

to-evaluate features at the head of a detection cascade and

use more powerful and more complex features at the tail end

of a cascade we are able to maintain fast average evaluation

times. By using these powerful features only to resolve the

class/non-class status of a tiny minority (see Figure 1) of the

input imagery we are able to benefit from their discriminative

power at negligible computational time cost.

Fig. 1. New Zealand speed signs (top three rows) and challenging speed
sign false positives (bottom three rows). The speed sign false positives
shown here represent a tiny minority (5 × 10−10 of windows scanned)
of non speed signs remaining after a four stage classifier. Logos, wheels
and other signs make up a large portion of difficult false positives. These
challenging instances require more powerful features to further reduce the
error rate of the classifier.

This paper is organised as follows: Initially we present

some background information covering prior work. This is

followed by an explanation of our baseline sign detection

framework. Next we outline two previously unpublished

Histogram of Oriented Gradient based features which are

used to extend the baseline system to further reduce the

detector false positive rate. Finally we include an analysis

of the results using speed sign training and validation tasks.



II. BACKGROUND

Given the importance of sign detection in several appli-

cations there is a significant amount of previous literature

dedicated to the subject [4], [5], [6], [7], [8], [9]. Unfortu-

nately, very little of this research deals with high volumes

of video data exposed to real world problems.

Many previous sign detectors have employed the use of

color sensitive features to take advantage of the strong color

cues used in traffic signs [4], [5], [8]. Broggi et al. [8] present

a real time road sign detector using color segmentation,

shape recognition and neural network learning. Lafuente-

Arroyo et al. [4] employ color and shape information within

a Support Vector Machine (SVM) based classifier. Bahlmann

et al. [5] apply a standard Haar feature based approach to

independent color channel information. Paulo and Correia

[6] have used red and blue color information as an initial

cue for a sign detection system. Signs are then further

classified using shape information into several broad sub-

categories such as ‘danger’ and ‘information’. While the

approach and features adopted in our research have been

applied to color information [10] we will limit the scope of

our experimental results in this paper to those obtained using

grayscale imagery in order to maintain a simpler platform for

comparisons.

Alefs et al. [7] present a road sign detection framework

using edge orientation histograms as the main feature. More

recently, Timofte et al. [9] detailed a full sign detection

algorithm employing Haar-like features which automatically

acquires a 3D localisation (geo-location) of the detected

signs. While this method does commit to some sign specific

shape based techniques it is shown to produce excellent

results across a range of sign types and circumstances.

A major distinguishing feature of this research from prior

work by others is the use of large scale training and vali-

dation real world video data (see Figure 1). This enables us

to perform a direct performance comparison of alternative

detectors at the scale in which the system will be deployed,

on video of entire national road networks. Training and

validation is performed using a 15 million 1024×768 image

frames collected at a geospatial frequency of 10 meters

across New Zealand. To our knowledge this is the largest

validation task ever presented for a sign detection problem.

III. A BASELINE DETECTION SYSTEM

In this section we introduce our baseline experimental

detector against which we can test our two prospective HOG

features. Since the construction and design of this preexisting

detector differs somewhat to that found in prior literature its

implementation warrants both description and justification.

The aim of our detector creation process is ideally to yield

a three to five stage classifier. The final classifier should aim

to achieve a 99% detection rate with a false positive rate

below 10−9. Some applications require false positive rates

as low as 10−11 to 10−12.

The following elements are used in the creation of our

baseline detector:

A short cascade structure: While several other detectors

found in literature have used a cascade detector structure [3],

[11], [12], [13] all of these have tended to consist of a large

number of cascade stages (more than 20 in [12] and [13]).

In contrast, we employ a short cascade with just five stages.

Since each stage will likely reduce the detection rate, many

stages can become a liability to the maintenance of a high

detection rate. Even if very ambitious per stage detection

rates are specified these must be set against a validation

population which may not be a reliable indicator of the actual

detection rate which will be a achieved.

The LogitBoost [14] Learning Algorithm: The time-

constrained nature of our final application means that we

require a learning algorithm providing efficient classifiers,

boosting meets this criteria. Of the large number of boosting

algorithms available [14], [15], [16] we have selected

LogitBoost [14] as our chosen approach. The motivation for

this is that we have found it to be the most consistently

superior on a sign detection task when compared to others

we have considered (Including AdaBoost, RealBoost [15]

and GentleBoost [14]).

LiteHOG+ [2] as the Default Feature: Again the time-

constrained nature of our application means that we cannot

move away from an extremely fast feature such as LiteHOG+

for the majority of the cascade evaluation work.

Speed Signs as the Object Class: This paper makes no

specific sign type assumptions although we have chosen to

use the New Zealand speed sign as a test case. Of the many

traffic sign types we consider to be of interest, speed signs

are among the most abundant within a typical road scene.

By dividing our New Zealand video according to the natural

geographic division between the country’s north and south

islands we get a training population of 57377 speed signs

from the north island with a validation population of 21500

signs from the south island. By merging all speed signs into

a single sign type we create a sign class which is relatively

challenging, since a general speed sign detector must capture

the properties of a variety of face values in a single detector.

IV. PREVIOUS HOG IMPLEMENTATIONS

In the literature, the name “Histograms of Oriented Gra-

dients” or HOG has been used to refer to a number of

unique but related features. Differences vary in terms of the

shape and size of the local region over which a histogram

may be calculated, the range of orientations allocated to

a single histogram bin, the normalisations (if any) applied

to the gradients, and the manner in which the descriptor

responses are combined by a machine learning method or

other approach.

The power of HOG features came to prominence via

the work of Dalal and Triggs [17] who demonstrated its

superiority above a number of features in a basic pedestrian

detection problem. This original work provided a plethora of

closely related HOG variants which it compared on its own

INRIA pedestrian dataset. The authors follow the approach

of varying a number of parameters in order to find some

degree of “optimal” HOG feature. Notably, they compare



both rectangular and circular “cells” over which to sum

gradients, and compare the merits of increasing the number

of orientation bins. At the learning level they apply Linear

SVM learning to construct the final pedestrian detector.

Despite its successes on a challenging pedestrian detection

problem the evaluation of the Dalal and Triggs SVM classi-

fier is quite slow. In response Zhu et al. [11] created a much

faster HOG based pedestrian detector using an AdaBoost

trained classifier. The resulting HOG classifier yielded a

greater than 60 times speedup with comparable detection

performance. Two key differences in the work of Zhu et al.

as compared to the original Dalal and Triggs implementation

is the use of HOG features at a wide variety of scales and the

per-histogram linearisation using individually trained SVM

classifiers for each feature.

Our previously published feature, LiteHOG+ [2], is an

even more computationally efficient HOG feature. Limiting

the cell size over which gradients are summed to a 4 × 4
image region, greatly reduces the computational complexity

of the feature.

The two HOG features presented in this paper are most

closely aligned to those presented in [11] in that histograms

are taken over multiple shapes and scales and are combined

using a boosting approach. Primarily what makes our two

features distinct from those of Zhu et al. is the manner in

which we create a linear class/non-class weak hypothesis

from the histogram response.

V. FORMULATING NEW HOG FEATURE VARIANTS

As an ensemble method [18], boosting acts on a popula-

tion of weak hypotheses or models rather than the feature

responses themselves. Where Zhu et al. employ the use of

SVM to create the weak hypotheses we chose to use the

Smoothed Response Binning (SRB) learner as used in [2],

[19], [20]. An advantage of the SRB learner is its ability

to learn multi modal distributions with high accuracy and a

low degree of overfitting when training populations are small.

However, no direct comparison has been made between SRB

learners and SVM applied as a weak learner.

A. Single Bin HOG Feature (S-HOG)

Rather than applying any form of SVM linearisation, sin-

gle bin HOG features are constructed by taking the individual

histogram bins separately. By pairing the one dimensional S-

HOG feature responses with an SRB learner we create the

weak hypotheses required by boosting.

Therefore the S-HOG feature response is calculated by

simply taking the sum of gradient magnitudes (aligned to

a single orientation bin) within a rectangular area to be

the feature response. Equation 1 shows the formula for

calculating the feature response f(x) of a single S-HOG

feature.

f(O,R, x) =
∑

∀(i,j)∈R

GO(i, j) (1)

where O ∈ {0, 1, . . . , 7} defines the orientation according to

Figure 2, R defines the set of points within a given rectan-

gular region, and GO() provides the L1 gradient magnitude

at coordinates (i, j) in the input image x.
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Fig. 2. The orientation space is divided into 8 bins. Each pixel in the gray
image is assigned to one of these orientations.

In similar fashion to Zhu et al. we employ the use of

the integral image representation [3], [21] to optimise the

summing of gradient magnitudes over various rectangular

shapes R. Figure 3 shows the basic flow of computation

from the input image to the creation of the integral images.
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Fig. 3. Computing the Histogram Integral Images. Given a grayscale image,
the horizontal (x) and vertical (y) gradients of an image are computed at
every pixel using a [−1, 0, 1] kernel. This is then used to compute an L1
magnitude and discretised orientation for each pixel. The magnitude values
are subsequently separated according to 8 orientations (see Figure 2) which
are used to create 8 separate integral images.

Given a positive and negative class population of scalar

feature responses f() we then train a weak hypothesis using

the SRB learner. The trained S-HOG features can then be

used in any ensemble learning algorithm. The performance

of S-HOG features is given in Section VI.

B. FDA Linearised HOG Feature (FDA-HOG)

The second HOG feature we will deal with in this paper

is the Fishers Discriminant Analysis (FDA) linearised HOG

feature (FDA-HOG). The idea here is to replace the SVM

learner used by Zhu et al. [11] with a linearisation obtained

using Fishers Discriminant Analysis [22]. This scalar re-

sponse can then be combined with an SRB learner as in

the S-HOG feature. The motivation for this is simple, FDA

can supply a linearisation in less time than it would take

to train a local SVM classifier for each prospective feature.

Furthermore, the evaluation of the final feature response is

simpler than evaluating an SVM classifier at run-time.

As with the S-HOG feature we use 8 orientation bins

as shown in Figure 2 and use L1 gradient magnitudes. In

order to maximise the potential of the featurespace we allow

masking of the 8 dimensional histograms to allow FDA to

work on subsets of N histogram bins. We find the projection

w using the canonical variate of FDA [22] via Equation 2.

w = S−1
w (m1 −m2) (2)



where w is the N dimensional projection matrix, Sw is

the within class scatter matrix and m1, m2 are the means of

the positive and negative classes respectively.

This gives us the feature response:

f(Ō, R, x) = w · Φ(Ō, R, x) (3)

where Ō is a vector containing the selected orientations

from {0, 1, . . . , 7}, R defines the set of points within a given

rectangular region, and Φ() supplies the histogram vector for

the gradient magnitudes within rectangle R in image x for

the required orientations Ō.

As with the S-HOG feature the weak hypothesis is cal-

culated using the SRB learners trained with a population of

positive and negative training data.

VI. EXPERIMENTAL EVALUATION

In accordance with our aim of finding more powerful

features to improve our classifier performance at the tail

end of the detection problem we trained a baseline five

stage LiteHOG+ classifier using LogitBoost (see Section III).

Tables I and II provide some detailed information about this

preexisting cascade.

TABLE I

BASELINE CLASSIFIER INFORMATION

Sign Type New Zealand Speed Signs

# Training Positives 57377

# Validation Positives 21500

# Training Negatives 160K

# Validation Negatives 40K

Negative Source NICTA Road Scene DataBase

With regard to the training and validation positives shown

in Table I we note that not all positive instances will pass

through to the later stages of the cascade since they will be

lost in the earlier stages in accordance with the false negative

rates shown in Table II. Conversely, the number of training

negatives supplied in each training iteration is held constant

by bootstrapping negative examples from the NICTA Road

Scene DataBase (NICTA RSDB). This database includes a

collection of road scene videos collected in a diverse range

of settings around the world, including numerous locations

in Australia, the United States, Europe and China. The total

amount of data which can be scanned for negatives includes

over 10 Million video frames, primarily with a resolution

of 960 × 540. Bootstrapping from this database proceeds

for each stage with a calibration step aimed at calculating

the sparsest sampling pattern which will yield sufficient

samples to make up the negative training set. That is, for the

initial stages where false positive rates are still significant,

the bootstrapping process will use a sparse frame sampling

method with a larger step size and scaling factor3 in a search

for negative road scene instances. Since this data is collected

from a road scene that may contain significant true sign

3According to the usual sliding windows and scale-space pyramid ap-
proach seen in other literature [3].

instances we must also perform a manual ‘cleaning’ step

to ensure that the negative training and test images are free

from actual speed signs.

TABLE II

PER-STAGE BASELINE CLASSIFIER INFORMATION

Stage # 1 2 3 4 5

# Features 35 200 400 600 1000

# Feature Pool 4300 2048 2048 2048 2048

Per-Stage False Neg. 0.02% 0.58% 0.24% 0.24% 0.24%

Accum. Hit Rate 99.98% 99.40% 99.16% 98.92% 98.68%

Per-Stage False Pos. 0.1% 0.1% 1% 5% 20%

Accum. False Pos 10−3 10−6 10−8 5×10−10 10−10

Table II shows the per stage training parameters. The

number of features in each stage is gradually increased with

just 35 features in the initial stage. Essentially this is in

accordance with a tried and tested formula used in many

of our other classifiers. The feature pool in Table II refers to

the number of LiteHOG+ features which are made available

for selection in each training iteration during boosting. This

feature pool is replaced with a random subset of the total

featurespace at each iteration, increasing the total number

of features available to the classifier. Experimentation shows

that no improvements are made to classifier performance if

the feature pool is increased.

The accumulated false positive rate shown in Table II is

calculated using the NICTA Road Scene DataBase (NICTA

RSDB). This statistic is known to vary significantly between

videos from different scenes.

In our first pair of experiments we replace the fifth stage

LiteHOG+ classifier with either an S-HOG or FDA-HOG

classifier, maintaining all other experimental parameters as

shown in Tables I and II. In order to compare the fifth stage

LiteHOG+ feature with the S-HOG and FDA-HOG classifier

we produce ROC (Receiver Operating Characteristic) curves

for each of the three classifiers. Rather than producing an

ROC curve for the entire range of false positive rates and hit

rates we limit our calculation to those values achievable given

the preexisting four stages. This ‘locked in’ false negative

rate is indicated by the gray region of the ROC plot shown

in Figure 4.

A. Native vs. Introduced Negatives

Statistical machine learning algorithms tend to learn pat-

terns in training data which can be considered to be of two

different categories, general patterns and specific patterns.

General patterns are those that are represented in the training

data which can be said to describe an actual property in that

class of data in the real world. Specific patterns are those

patterns which are present in the training data but may not

occur to the same degree for a given target class in the real

world.

The surprising observations noted in Figure 4 suggested

that overfitting on specific patterns may have been an issue

for the S-HOG and FDA-HOG features. Furthermore, a close

examination of the bootstrapped negatives reveals that vari-

ous video datasets within the NICTA Road Scene DataBase
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Fig. 4. Fifth stage ROC performance using training and validation
images obtained using the NICTA Road Scene DataBase. Surprisingly
the performance of each of the three features is almost equivalent. Upon
closer inspection of the classifiers we found that the S-HOG and FDA-
HOG features achieved much higher detection rates than LiteHOG+ on
training data. This suggested that the S-HOG and FDA-HOG features were
overfitting patterns in the training data more severely. See Section VI-A.
The gray shaded area at the top of the plot indicates the accumulated false
negative rate incurred by the previous four stages (see Table II).

tend to exhibit differing volumes of false positives belonging

to locally specific negative instances. For example, false

positives that may be common in an urban city in Asia may

be significantly different to those found in rural Australia.

Thus we suspected that the S-HOG and FDA-HOG features

in question may simply be exhibiting a greater degree of

overfitting to the specific patterns in the introduced video

data from the NICTA RSDB than LiteHOG+4.

A solution to this problem is to use native negatives

from our New Zealand video rather than introduced images

sourced from other video. That is, training negatives should

be taken from the same video data as the corresponding pos-

itive training instances. This ensures that there is no undue

divergence between positive and negative class properties due

to effects such as camera noise and country specific patterns

(logos, signage, clutter, weather, etc.). Figure 1 shows some

false positives which are typical in New Zealand.

In light of this we repeat the experimentation shown

in Figure 4 using native negatives sourced from within

the corresponding New Zealand north (training) and south

(validation) island videos. Results are shown in Figure 5.

While both of the new HOG features perform well given

native training and validation negatives we note that the

simpler S-HOG feature dominates. This yields the rather

surprising result that combining HOG dimensions into indi-

vidual weak classifiers is not particularly more discriminative

than allowing boosting to provide a linear combination itself.

It would be very interesting to determine if this remains the

case when comparing with the HOG features of Zhu et al.

[11] who combine HOG dimensions using SVM. In context

4This can likely be attributed to the fact that the LiteHOG+ feature
is not gradient magnitude sensitive but rather uses a binary threshold
representation of gradient strength [2].
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Fig. 5. Fifth stage ROC performance using training and validation images
obtained using the New Zealand Video. Results indicate that the S-HOG
and FDA-HOG features are indeed able to reduce additional false negatives
significantly. For the S-HOG feature we observe a 50% reduction in the
per-stage false negative rate for a given per-stage false positive rate of 20%.
The gray shaded area at the top of the plot indicates the accumulated false
negative rate incurred by the previous four stages (see Table II).

detections of the cascade are shown in Figure 6.

The use of native negative data is not yet widespread in

the object detection community. For example, the pedestrian

dataset of Dalal and Triggs [17] uses pedestrians from

entirely different source images to those used to obtain the

non-pedestrian instances. A close examination of the images

shows numerous textural, shading and color differences

between the pedestrian and non-pedestrian images. It may

therefore be the case that several features which have been

promoted to prominence via comparisons on this dataset

will not perform as well given a detection task involving

native negative data. We note that comparison tests using

the MIT pedestrian dataset [23] consisting of native negative

data yields substantially different results for several popular

feature types with benchmark ‘winning’ performance on the

INRIA dataset of [17].

B. Classifier Evaluation Speed

Timing experiments have shown that for very low false

positive rates the speed of the cascade is almost entirely

dependant on the computational complexity of the first stage.

We find that the computational complexity of the fifth stage

is essentially totally irrelevant in terms of the average evalu-

ation time of a cascade. Furthermore, our implementation is

such that precomputed datatypes, like the histogram image[2]

and integral image, need only to be computed on those

regions of the image where hits are actually found in the

later stages of the cascade. All cascade classifiers shown in

Figures 4 and 5 evaluate at approximately 23 frames per

second using an Intel Core i7 3.33GHz processor for an

image resolution of 768 × 580 with 420000 windows per

image. If we employ our GPU implementation to further

improve classifier evaluation time, speeds of up to 245 frames

per second can be achieved using a single GPU on an

NVIDIA GeForce GTX 295 card.



Fig. 6. Example detections and false postives in context.

VII. CONCLUSIONS

In this paper we have presented two new histograms of

oriented gradients (HOG) features, the S-HOG and FDA-

HOG features. Both S-HOG and FDA-HOG show a signif-

icant discriminative power on a difficult tail end speed sign

detection problem extending a preexisting cascade detector.

With more powerful features comes a greater potential to

overfit on specific local patterns in training data. Thus we

make use of native negative image data rather than introduced

non-class image data taken from an alternative video source.

Given a large scale detection problem the S-HOG feature

was able to reduce further increases in false negative error

by 50%. Additionally we find that the simpler S-HOG

feature performs well against its more complex FDA-HOG

counterpart.

The resulting five stage speed sign detector achieves a

detection rate of 98.8% in conjunction with a very low

false positive rate of 10−10. The evaluation time of the final

classifier is 23 frames per second on 768 × 580 resolution

video when using a CPU implementation and 245 frames per

second with a GPU implementation.
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